单点、双点弦截法求解方程根

弦截法:

             (a) 用牛顿法解方程f(x)=0,虽然在单根附近具有较快的收敛速度,但它有个明显的缺点,就是需要计算导数f’(x),当f(x)比较复杂时,计算f’(x)可能有困难。

    (b)弦截法和牛顿迭代法基本思想是一样的, 也是将非线性方程f(x)=0逐步转化为线性方程求解,其区别在于牛顿法是依次用切线代替曲线,用切线的零点作为f(x)零点的近似值;弦截法用弦线代替曲线,用弦线的零点作为f(x)零点的近似值.        

                

       

所以得出:  

        

其中:

       

 

例题:使用单点、双点弦截法求方程xe^x=1在[0,1]中的根。            

#include<cstdio>
#include<cmath>
void fact(double &x0,double &x1) {//双点弦截法
	double temp=x1;
	x1=x1-(x1*exp(x1)-1)/(x1*exp(x1)-x0*exp(x0))*(x1-x0);
	x0=temp;
}
void fact1(double x0,double &x1) {//单点弦截法
	double temp=x1;
	x1=x1-(x1*exp(x1)-1)/(x1*exp(x1)-x0*exp(x0))*(x1-x0);
}
int main() {
	double x0=0,x1=1;
	while(fabs(x1-x0)>=1e-15) {
		printf("%.7lf\n",x1);
		fact(x0,x1);//双点弦截法
	}
	printf("\n");
	x0=0,x1=1;
	while(fabs(x1-x0)>=1e-15) {
		x0=x1;
		printf("%.7lf\n",x1);
		fact1(0.0,x1);//单点弦截法

	}
	return 0;
}

 

已标记关键词 清除标记
相关推荐
1. 目的: (1)通过采用牛顿迭代和二分的程序设计,使学生更加系统地理解和掌握C语言函数间参数传递方、数组和指针的应用等编程技巧。培养学生综合利用C语言进行科学计算,使学生将所学知识转化为分析和设计数学中的实际问题的能力,学会查资料和工具书。 (2)提高学生建立程序文档、归纳总结的能力。 (3)进一步巩固和灵活运用先修课程《计算机文化基础》有关文字处理、图表分析、数据归整、应用软件之间图表、数据共享等信息技术处理的综合能力。 2. 基本要求: (1)要求用模块化设计和C语言的思想来完成程序的设计; (2)要求分别编写牛顿迭代和二分的函数,分别存到不同的.CPP文件中; (3)在VC++6.0环境中,学会调试程序的方,及时查究错误,独立调试完成。 (4)程序调试通过后,完成程序文档的整理,加必要的注释。 一般解一元方程,常用采用的方有:牛顿迭代和二分等。 牛顿迭代 〖〖f(x)=a〗_0 x〗^n 〖〖 + a〗_1 x〗^(n-1) +⋯+〖 a〗_(n-2) x^2 +〖 a〗_(n-1) x +〖 a〗_n=0 求f(x)在〖 x〗_0附近的。 计算公式:〖 x〗_(n+1)=〖 x〗_n- f(〖 x〗_n )/(f(〖 x〗_n)) ́ 精度:ε=|〖 x〗_(n+1)-〖 x〗_n|<1.0e-m ,m=6。 牛顿迭代 所求的:满足精度的〖 x〗_n 二分 任取两点〖 x〗_1和〖 x〗_2,判断(〖 x〗_1, 〖 x〗_2)有无实。如下图所示,如果f(〖 x〗_1 )和f(〖 x〗_2 )符号相反,说明(〖 x〗_1, 〖 x〗_2)之间有一实。取(〖 x〗_1, 〖 x〗_2)的中点x,检查f(x)和f(〖 x〗_1 )是否同符号,如果不同号,说明实在(〖 x〗_1,x)区间,x作为新的〖 x〗_2,舍弃(x, 〖 x〗_2)区间;若同号,则实在(x, 〖 x〗_2)区间,x作为新的〖 x〗_1, 舍弃(〖 x〗_1,x)区间。再据新的〖 x〗_1 、 〖 x〗_2,找中点,重复上述步骤。直到|〖 x〗_1-〖 x〗_2|〖<10〗^(-6)时,x =(〖 x〗_1+〖 x〗_2)/2为所求。 (3) 取f(〖 x〗_1 )与f(〖 x〗_2 )连线与x轴的交点x,从(〖 x〗_1, x)和(x, 〖 x〗_2)两个区间中取舍的方与二分相同。 计算公式为: 判断f(〖 x〗_1 )与f(〖 x〗_2 )是否同符号的方与二分采用的方相同。直到先后两次求出的x的值之差小于〖10〗^(-6)为止。 分别用牛顿迭代和二分求下列方程,分析比较各种方的迭代次数及精度。 〖f(x)=x〗^3 〖- 2x〗^2 +7x +4=0 牛顿迭代的初值:x=0.5; 〖 x〗_1,〖 x〗_2的初值:-1,1 二分〖 x〗_1,〖 x〗_2的初值:-1,0 精度要求:|〖 x〗_1-〖 x〗_2| 〖<10〗^(-6)
©️2020 CSDN 皮肤主题: 撸撸猫 设计师:C马雯娟 返回首页